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The spatial distributions of the static magnetic field components
and MR phase maps in space with homogeneous magnetic sus-
ceptibility are shown to be harmonic functions satisfying Laplace’s
equation. A mean value property is derived and experimentally
confirmed on phase maps: the mean value on a spherical surface
in space is equal to the value at the center of the sphere. Based on
this property, a method is implemented for significantly improving
the precision of MR phase or field mapping. Three-dimensional
mappings of the static magnetic field with a precision of 10211 ;
10212 T are obtained in phantoms by a 1.5-T clinical MR scanner,
with about three-orders-of-magnitude precision improvement over
the conventional phase mapping technique. In vivo application of
the method is also demonstrated on human leg phase maps. © 2001

cademic Press

Key Words: field mapping; harmonic function; mean value
property; phase; SMV.

In magnetic resonance spectroscopy and imaging, it i
sirable to map the magnetic field distribution for shimm
procedures (1, 2), and the interpretation or correction of a
facts (3). Also, a magnetic field map could provide informat
important for understanding the magnetic susceptibility ef
(3–5) related to many medical applications such as functi
magnetic resonance imaging (6), tumor oxygenation measur

ent (3, 7), and bone marrow composition studies (8). Mag-
etic resonance phase imaging (MRPI) is commonly use
apping the magnetic field (3, 9, 10). However, MRPI tech
ology has precision limits of about 1028 ; 1029 T for

magnetic field mapping on phantoms and underin vivo condi-
tions (11).

A harmonic function (12–14) u is defined as satisfyin
aplace’s equation¹ 2u 5 0, commonly used for solving th

boundary value problems of static electromagnetic poten
(15). In this paper we realize that all of the vector compon
of the static magnetic fields and the MR phase distribution
harmonic functions in regions with homogeneous mag
susceptibility (HMS). Based on the mean value propert
harmonic functions (12, 13, 16), a method is developed f
mproving the measurement precision for MR phase and

agnetic field signals. By means of gradient echo phas
4421090-7807/01 $35.00
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aging, we generate field maps with high precision up
10211 ; 10212 T. Such a measurement precision is compar
with that of a superconducting quantum interference de
(SQUID) for the magnetic field measurement (17). Feasibility

ith in vivo applications is also demonstrated.

THEORY

In free space or regions without susceptibility heterogen
and no macroscopic currents, all the components of the
magnetic fieldH satisfy Laplace’s equation, i.e.,¹ 2H i 5 0,

5 x, y, z, or ¹ 2H 5 0, which can be easily derived
setting the temporal derivative of the magnetic field in
electromagnetic wave equation (18) to zero. Therefore, loc

agnetic induction (4, 19) experienced by a nucleus, (11
x/3)H, also satisfies Laplace’s equation. Since the sp
distribution of the phase of the MR signal,f( x, y, z), linearly
corresponds to thez component of magnetic induction assu
ing no phase aliasing, we have

¹ 2f 5 0. [1]

In short, both local magnetic induction andf are harmoni
functions in regions with HMS.

The mean value property of harmonic functions (12, 13, 16)
states that the mean value of a harmonic functionu on a
pherical spaceV is equal to the value at the center ofV, i.e.,

spherical mean value~SMV! 5 u~R! 5
1

L E
V

u~R 1 r !dV

[2]

n which V is either a spherical surfaceSr with radiusr or a
shell Vr with radius r ranging fromr 1 to r 2; L is either the
urface area ofSr or the volume ofVr ; R is at the cente

of V (Fig. 1).
This property directly applies to the local magnetic induc

and phase mapf in regions with HMS. With Eq. [2] we ca
effectively reduce the noise in the MR phase and field m
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443COMMUNICATIONS
surements. The SMV decreases the random noise of the
value by a factor of the square root ofN, the total number o
the data points for averaging. For a sphere of radiusr in a 3D
image data set,N ' 4p

3
r 3. In this paper, the spatial distance

easured by an image unit (i.u.), which is defined as the w
f thex dimension of an image pixel or voxel. Whenr is fixed,

the center value, replaced by the average of all the
ment values in the sphere, has its random noise reduced
factor of Î4p

3
r 3/2. With the radius of a typical image size 1

voxels, this is a noise reduction by 2000 times! Thus we
effectively reduce the noise level of the MRPI phase maps
the SMV property to improve the precision for magnetic fi
measurement.

ANALYSIS AND RESULTS

Three-dimensional phase images of solution phantom
analyzed with customized Interactive Data Language (
software. Shown in left column of Fig. 2 are typical ph
image slices of a typical phantom along three orthog
directions (transverse, sagittal, and coronal).

Validation of the Harmonic Function Distribution

To verify that the phase distribution is truly a harmo
function in regions of HMS, we employ the Laplace deriva
operation (LDO), a convolution of the 3D phase imagesu( x, y,
z) with the Laplacian operatorL̂ (20), to generate Laplac
derivative maps (L-maps). For images with identical sp
resolutions in three orthogonal directionsx, y, and z, the
discrete form of Laplace’s equation is (21)

1
6 ~u1,0,0 1 u21,0,0 1 u0,1,0 1 u0,21,0

1 u 1 u ! 2 u 5 0 [3]

FIG. 1. Harmonic functionu(R). Sr is a spherical surface centered aR
(5OCh) with radius r . Vr is a spherical shell also centered atR with radius
anging fromr 1 to r 2. The functionu(R) is equal to the mean value ofu on Sr

or Vr .
0,0,1 0,0,21 0,0,0
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in which ui , j ,k is the voxel value at the position (i , j , k) (i , j ,
k 5 0, 61), and the center voxel is at the position (0, 0,
A 3 3 3 3 3 Laplacian operator is constructed as

L̂ 5 510 0 0
0 1

6 0
0 0 02

k521

, 1
0 1

6 0
1
6 21 1

6

0 1
6 02

k50

, 10 0 0
0 1

6 0
0 0 02

k51

6 ,

[4]

nd Laplace’s equation is equivalent to

L̂ u 5 0. [5]

herefore, it is expected that the L-maps have constant
alues throughout the region with HMS and this is dem
trated for phantoms in Fig. 2. Quantitative results from typ
D regions of interest (ROI) with HMS in phantoms also sh

FIG. 2. Comparison of the raw phase maps with the L-maps for the C4

aqueous solution phantom. (a) Typical phase image slices perpendic
three orthogonal directions (transverse, sagittal, and coronal); all are
with identical window size ([0, 2] radians). (b) The L-maps shown with a s
window size ([21, 1] radians). For HMS regions, the L-maps are unifor
zero with standard deviations smaller than that of raw maps.
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444 COMMUNICATIONS
that the L-maps have mean value very close to zero, tw
three orders of magnitude smaller than the standard dev
of the L-maps (Table 1).

We further investigate the mean value property of the p
map with SMV analysis on the 3D phase data. The SMV(r ) for
a point of interest is calculated by averaging the values o
the image elements on a spherical shell centered at that
If not stated otherwise, the spherical shells we used for ana
in this work have a thickness of one image unit. The SMVr )
for r . 1 i.u. at a center point (x0, y0, z0) is obtained by takin
the mean value of those voxels at the coordinates (x, y, z)
satisfyingr 2 # ( x 2 x0)

2 1 ( y 2 y0)
2 1 ( z 2 z0)

2 , (r 1
1)2. For r 5 1 i.u., from Eq. [5] we have (L̂ 1 1)u 5 u. The
eft-hand side is equivalent to an image convolution b

odified Laplacian derivative operator with zero weight on
entral matrix element (0, 0, 0). This means that the value
entral voxel is given by the six neighboring voxels which
n the three orthogonal directionsx, y, andz. Therefore it is

justified to define SMV(1)5 (L̂ 1 1)u. For r 5 0, we define
SMV(0) 5 u0,0,0, the value of that voxel itself.

When the center point and the spherical shells with var
radiusr are all in the same region of HMS, the SMVs rem
constant for all radii (Fig. 3a). The standard deviation of
mean SMV(r ), 0.003 rad, is found to be much smaller than
image noise, 0.02 rad.

To examine the aggregate SMV behavior in a typical t
dimensional (2D) ROI (12 by 12 pixels), we calcul
mSMV(r ), the mean of the SMV values at radiusr , for all
pixels in that region, the radiusr varying from 0 to 15 i.u
When r 5 0, mSMV(0) is the raw data mean value, equa
1.471 rad. The fit of mSMV(r ) with radius by a constant lin
(not shown) gives the mean mSMV value 1.4686 0.002 rad
in good agreement with mSMV(0) within the noise level of
raw phase map predicted by the mean value property.

High-Precision Field Mapping

Magnetic resonance phase valuesf can be converted to th
z component of local magnetic induction,Bnmr, according to
f 5 (gBnmr 2 v0)TE, in whichv0 (5gB0) is the frequency o
the rotating frame and TE is the gradient echo time of

TABLE 1
Comparison of the Mean and the Standard Deviations (SD) of
the Phase Maps and L-Maps from the Typical Phantom Study

ROIa and size
(voxel)

Raw phase map Mean6 SD
(radians)

L-map Mean6 SD
(radians)

: 163 16 3 3 1.166 0.047 21.43 1024 6 0.033
b: 49 3 32 3 21 1.186 0.27 4.83 1025 6 0.040
: 31 3 32 3 7 0.946 0.18 22.73 1024 6 0.10

d: 32 3 32 3 32 1.346 0.19 22.83 1025 6 0.054

a Four typical three-dimensional ROIs with HMS are selected for the-
culation.
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imaging. Conventionally we adopt the relative field cha
h 5 [Bnmr 2 B0]/B0 in units of parts per million (ppm) as t
indicator of the field distribution. The relative fieldh maps fo
the same 2D ROI in the above section are obtained from
phase values, SMV(r ), directly. The field map noise is al
calculated, equal to the standard deviation of the differen
an h map and a background polynomial fit (20) of the h map.
Here the true field distribution is assumed to be varying m
more slowly in space than the noise variation. Computer
ulations showed that the noise determined from a proper
of polynomial fit is within 10% of the true data noise le
(ranging from 0.1 down to 1.03 1026 ppm) for ROIs of size
at least 10 pixels across.

Generally speaking, the larger the spherical radiusr , the
greater the number of voxels in the average, and the les
noise of theh map. Actually, theh map noise at radiusr , f(r ),
decreases very quickly from the noise of the raw field m
f(0) ; 0.0033ppm, to 10 times less as the SMV radius is o
three pixels (Table 2). WithN(r ) as the total number of voxe
for SMV at each radiusr , we assume

f~r ! 5
a

ÎN~r !
1 b, [6]

n which a andb are constants and account for raw data n
and systematic errors. The fit off(r ) versus 1/=N(r ) (a 5
3.25 3 1023 6 9 3 1025 ppm,b 5 27.90 3 1026 6 2 3

025 ppm) shows a good linear relationship in agreement
Eq. [6] (Fig. 3b).

Figure 4 shows the surface plot of severalh maps generate
by SMV at increased levels of precision. With the mean v
over a whole sphere of a large radius of 20 i.u., the
mapping precision 53 10212 T (;3.83 1026 ppm) is achieve
under the 1.5-T main field (Fig. 4f). The method reduces
field mapping noise by three orders of magnitude compar
the raw data without compromising the spatial resolution.

FIG. 3. Spherical mean value analysis. (a) Validation of the SMV p
erty. SMV values are plotted against the radii of the spherical shells for s
typical points of interest in the HMS regions under two typical field conditi
(i) the phase map changes monotonously along allx, y, andz axes (‚); (ii) the
phase map has local field extremities at least along one of the three orth
axes ({ and h). (b) Dependence of theh map noises,f, on the number o
pixels in averaging,N. The noisef for a typical 2D ROI (123 12 pixels) with
HMS is plotted against 1/=N, with a linear fit correlation coefficient of 0.99

l
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445COMMUNICATIONS
a different field distribution of another ROI, Figs. 4g and
show the raw field map andh map atr 5 6 i.u., respectively

he h map demonstrates substantial precision improve
over the raw field map.

In Vivo Feasibility

We also test the feasibility of applying the SMV method
in vivo 3D MR phase maps of human legs. Forin vivo appli-
cations, the HMS condition may not be satisfied, particular
those transition interfaces between muscle tissues, blood
sels, and bones. However, spaces of scales ranging from
eral to more than 10 voxels can be found on the L-maps
they have mean values very close to zero, several orde
magnitude smaller than the L-map standard deviations (Fi

TAB
The Noise Levels of the Relative Field h Maps Conve

r (i.u.):

One-image-unit-thickness

0 1 2

N 1 6 66
=N 1 2.45 8.1
f(r ) (ppm) 3.13 1023 1.6 3 1023 3.2 3 1024 2.0
f*( r ) a (ppm) 3.2 3 1023 1.3 3 1023 3.9 3 1024 2.5

a f *( r ) is the noise predicted from the linear fit results (Eq. [6]), in go
SMV(0), the noise of raw maps.

FIG. 4. Improved magnetic field mapping precision for the 2D ROI u
in Fig. 3b. (a) The raw field maph from SMV(0) with noise about 0.0033 pp
(b, c, d, e) High-precision field map obtained from the SMV on the sphe
shells with radii spanning fromr to r 1 1, r 5 1, 2, 3, 6 i.u., respectivel
SMV reduces the raw map noise to half atr 5 1 i.u., 13% atr 5 2 i.u., less
than 10% atr 5 3 i.u., and 4% atr 5 6 i.u. (Table 2). (f) The field ma
obtained by the SMV over the entire sphere of a radius of 20 i.u. The ra
noise is cut down to 3.83 1026 ppm. (g, h) The raw field map andh map a

5 6 i.u. for another ROI with a different field distribution. The two vert
cales on the left indicate 0.02 ppm for the change of the magnetic fie
nt

t
es-
ev-
nd
of
).

Therefore, the phase distributions in those spaces s
Laplace’s equation, and the SMV method is used to reduc
noise of the raw magnetic field map by an order of magni
for a typical 2D ROI shown in Fig. 6.

DISCUSSION AND CONCLUSION

Commonly used data processing methods such as smo
over a rectangular template or frequency filtering can gen

2
d from SMV(r) of a Typical 2D ROI in the Phantom

herical shells Whole sphere

6 10 r 5 16 r 5 20

470 1358 17071 33371
.6 21.7 36.8 131 183

1024 1.2 3 1024 8.1 3 1025 5.8 3 1026 3.8 3 1026

1024 1.4 3 1024 8.0 3 1025 1.7 3 1025 9.9 3 1026

agreement with the real noisef(r ). The noisef(r 5 0) (N 5 1) corresponds t

al

m

FIG. 5. Application of the Laplace derivative operation to 3Din vivo
human leg phase images (matrix 2563 256 3 64). Typical slices of phas
maps (column a) and L-maps (column b) along three orthogonal axes
verse, coronal, and sagittal) are shown with the position indicated b
coordinates. All images are scaled with an identical window size, [2p, p]
adians. Since the raw images have different resolutions alongx, y, andz axes
0.53 3 0.53 3 1 mm, respectively), different scaling factors are introdu
or x, y, andz terms in Laplace’s equation and the Laplacian operator (se
ppendix). The L-maps are uniformly zero within the noise of raw maps, e
t those transition interfaces between muscle tissues, blood vessels, and
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images with reduced noise, but these approximation me
may compromise both the spatial resolution and the acc
because they generally give a biased estimate of the true
value. The SMV method is a special smoothing method
spherical regions. Because the mean value property i
intrinsic property of harmonic functions, the SMV method
smoothing that maintains the correct estimate of the true
surement value for harmonic functions. From first princ
and also experimentally confirmed by this work, static m
netic fields and corresponding phase maps are harmonic
tions in HMS regions. Applied to these regions, the S
method produces high-precision field maps. These map
more accurate than conventional smoothing over a rectan
region (demonstrated by computer simulation).

With the robust spherical mean value method, we cut d
the field mapping noise to 53 10212 T (at r 5 20 i.u.), within
the sensitivity range 10210 ; 10213 T of the SQUID (17).

ompared to SQUID, MRPI has the advantage of 3D
apping with a spatial resolution of submillimeter. In addi

o the application to MR field shimming, the higher precis
agnetic field mapping can contribute to the creation of m

eliable baselines in phase-encoded MR spectroscopy
ore effective correction of the field inhomogeneity in sp

roscopy imaging (22). It can also help to correct image d
ortion artifacts to a more precise extent, and produce h
uality images (23).
However, the precision improvements can be comprom

ear edges where the size of the sphere must be decrea
rder to keep the whole sphere in the HMS region. Thein vivo
omogeneity of the magnetic susceptibility can be evalu
ith Laplace derivative operation. Our analysis with hum

eg phase maps suggests that the SMV method is applica
ocal in vivo regions with a scale as large as 10 voxels. E
ith the SMV on a sphere of radius of three voxels, the n
an be reduced to less than 10% of raw data noise (Tab
The MR scanner system instability can also limit the pr

ion improvements. When we reduce random noise to a

FIG. 6. In vivohuman leg relative fieldh maps for a typical 2D ROI (133
1 pixels, corresponding to the white rectangular marker in Fig. 5). (a) Th
eld maps. (b) The high-precision field map obtained from SMV analys
entire sphere ofr 5 4 i.u. The images are shown with artificially enlarg

ixels and a window range of [20.05, 0.15] ppm. The raw noise is cut do
rom 0.026 to 0.001 ppm.
ds
cy
xel
er
he
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e
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lar

n
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ed
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d
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n
e
2).
i-
ffi-

iently small quantity, the system instabilities will manif
hemselves, including semirandom or nonrandom factors
oth the experimental system and the environment. Pre
bly these factors are much smaller than the random no
aw maps. Whereas the SMV method gives us a tool to
he measurement noise down to this lower limit, it also
ides us the possibility of examining the system error facto
better extent by virtually eliminating the random noise.
Phase imaging is sensitive to the field deviations cause

actors such as local eddy currents, temperature fluctu
nd gradient deviations. Their net effects are to overlay s
n the phase map. Under the experimental condition of
ork the phase shift generated by eddy currents is presum

inear with the spatial coordinates (10). The Laplacian deriva
ive of a linear function is zero; therefore the phase shift du
ddy currents is a harmonic function. The temperature-ind
hase shift is also linear with the temperature change (11). The

emperature instability comes from environment (,0.1°C) and
he milder heating effects of MR sequences. Even when
emperature change is inhomogeneous in the phantom, a
s there are no substantial sources of heat generation or
ation within the spherical space for SMV analysis, the t
erature distribution will obey Laplace’s equation¹ 2T 5 0

(14). The sources of system imperfection may generate
linear gradient deviations, but the sources are not within
homogeneous susceptibility space under study. Therefore
the presence of eddy currents, temperature fluctuation
gradient deviations, the phase distribution is still classified
harmonic function in regions of HMS. This is confirmed by
highly homogeneous L-maps with the mean value devia
from zero only by a small amount on the order of 1024 rad
(;1.6 3 1025 ppm) or less (Table 1), and the constant m
value property shown in the SMV analysis (Fig. 3a). The S
method can be applied, but the field maps are overlaid
biases due to gradient deviations, eddy currents, and tem
ture fluctuations. The biases can presumably be cancele
with controls when only relative field or phase changes a
interest for most applications. Actually the methods in
paper make it feasible for a more precise quantitation o
effects on field maps by these factors. For example, tak
difference of the high-precision maps before and after tur
on a magnetic gradient, and the quantitative effect of e
currents from this gradient can be obtained with impro
accuracy.

In addition to the precision improvement and the evalua
of systematic factors, the method can be used for the ar
correction on phase maps as well. Due to factors suc
motion and flow, there are localized artifacts and smears o
phase maps. Generally speaking, for unknown data at a po
interest on phase images, we can actually obtain the true
of this point by taking the average of all the image elem
values on a spherical surface or shell surrounding it, whe
assumption of the harmonic function is valid throughout
whole spherical region.

w
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We have demonstrated theoretically and experimentally
magnetic field components and the phase distribution
uniform magnetic susceptibility region are harmonic functi
We further developed the general methodology of prec
improvement based on the mean value property of harm
functions. The precision of the 3D MR phase and magn
field mapping can be substantially improved both in phan
and in vivo.

EXPERIMENTAL

Experimental phantoms consist of one or more small b
(various shapes such as cylindrical and rectangular, and
of a few centimeters, filled with 0.03; 0.1 M aqueous CuSO4
solution) glued to a thin plastic supporting frame mounted
large beaker. The beaker is filled with much less concent
copper sulfate aqueous solution (,1022 M). The susceptibility
difference between the inside and outside the small box
tributes to the magnetic field inhomogeneity in the phant

Three-dimensional fast-low-angle-shot (FLASH) image
the phantoms were obtained with a head coil on a Sie
1.5-T clinical MR scanner (gB0/ 2p 5 63.59 MHz). The
imaging parameters for the phantoms are TR/TE 40/15 ms
angle 30°, matrix 1283 1283 128, resolution 13 1 3 1 mm,
and single excitation. Thein vivo 3D phase maps were a
quired for a thick transverse section of the small leg of a fe
human subject, with imaging parameters TR/TE 40/15 ms
angle 30°, matrix 2563 2563 64, resolution 0.533 0.533
1 mm, and single excitation. The original FLASH phase
ages appear with zebra stripes because of the asymm
gradient echoes. They are restored to normal images
customized IDL software by shifting the central positions
the MR gradient echo signals in thek space before the Four
transform. Then the phase maps were used for data ana

APPENDIX

Construction of the 3D Laplace Derivative Operator L̂

From Laplace’s equation

 2u

 x2 1
 2u

 y2 1
 2u

 z2 5 0, [1]

we consider the discreet form of the equation at the pos
(0,0,0) (ui , j ,k is the value of the voxel at the position (i , j , k) (i ,
j , k 5 0, 61)),

 2u

 x2 5

u1,0,0 2 u0,0,0

Dx
2

u0,0,0 2 u21,0,0

Dx

Dx

5
u1,0,0 1 u21,0,0 2 2u0,0,0

~Dx! 2 . [2]
at
a
.
n
ic
ic
s

es
zes

a
ed

n-
.
f
ns

ip

le
ip

-
ical
ith
f

is.

n

Similarly

 2u

 y2 5
u0,1,0 1 u0,21,0 2 2u0,0,0

~Dy! 2

 2u

 z2 5
u0,1,0 1 u0,21,0 2 2u0,0,0

~Dz! 2 . [3]

Assume thatDx 5 d,
Dx

Dy
5 l1, and

Dx

Dz
5 l2; then

¹ 2u 5
u1,0,0 1 u21,0,0 2 2u0,0,0

d 2

1 l 1
2 z

u0,1,0 1 u0,21,0 2 2u0,0,0

d 2

1 l 2
2 z

u0,0,1 1 u0,0,21 2 2u0,0,0

d 2

5
1

d 2 @~u1,0,0 1 u21,0,0! 1 l 1
2~u0,1,0 1 u0,21,0!

1 l 2
2~u0,0,1 1 u0,0,21! 2 2~1 1 l 1

2 1 l 2
2!u0,0,0#

5 0 [4]

u1,0,0 1 u21,0,0 1 l 1
2~u0,1,0 1 u0,21,0! 1 l 2

2~u0,0,1 1 u0,0,21!

2 2~1 1 l 1
2 1 l 2

2!u0,0,0 5 0. [5]

Normalize the coefficient ofu(0, 0, 0) to one, and we hav

1

2~1 1 l 1
2 1 l 2

2!
~u1,0,0 1 u21,0,0!

1
l 1

2

2~1 1 l 1
2 1 l 2

2!
~u0,1,0 1 u0,21,0!

1
l 2

2

2~1 1 l 1
2 1 l 2

2!
~u0,0,1 1 u0,0,21! 2 u0,0,0 5 0. [6]

he Laplacian operatorL̂ is a 33 3 3 3 matrix; the compo
ents are

L̂3,z561 5 S0 0 0
0 0.5l 2

2/~1 1 l 1
2 1 l 2

2! 0
0 0 0

D
L̂3,z50 5 S 0 0.5l 1

2/~1 1 l 1
2 1 l 2

2!
0.5/~1 1 l 1

2 1 l 2
2! 21

0 0.5l 1
2/~1 1 l 1

2 1 l 2
2!

0
0.5/~1 1 l 1

2 1 l 2
2!

0
D . [7]
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1
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1
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If l1 5 l2 5 1 in Eq. [6]

1
6 ~u1,0,0 1 u21,0,0 1 u0,1,0 1 u0,21,0

1 u0,0,1 1 u0,0,21! 2 u0,0,0 5 0 [8]

then

L̂ 5 510 0 0
0 1

6 0
0 0 02

z521

, 1
0 1

6 0
1
6 21 1

6

0 1
6 02

z50

, 10 0 0
0 1

6 0
0 0 02

z51

6 .

[9]

For image analysis, Laplace’s equation is equivalent
convolution ofL̂ with u

L̂ # u 5 0 or L̂ u 5 0. [10]

e define the Laplace derivative operation (LDO) asL̂ V u or
ˆ u, which produces the homogeneous Laplace derivative
L-map) with expected zero value.
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