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The spatial distributions of the static magnetic field components
and MR phase maps in space with homogeneous magnetic sus-
ceptibility are shown to be harmonic functions satisfying Laplace’s
equation. A mean value property is derived and experimentally
confirmed on phase maps: the mean value on a spherical surface
in space is equal to the value at the center of the sphere. Based on
this property, a method is implemented for significantly improving
the precision of MR phase or field mapping. Three-dimensional
mappings of the static magnetic field with a precision of 107" ~
107" T are obtained in phantoms by a 1.5-T clinical MR scanner,
with about three-orders-of-magnitude precision improvement over
the conventional phase mapping technique. In vivo application of
the method is also demonstrated on human leg phase maps. © 2001
Academic Press
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aging, we generate field maps with high precision up t
10" ~ 10 ¥ T. Such a measurement precision is comparab
with that of a superconducting quantum interference devic
(SQUID) for the magnetic field measureme?); Feasibility
with in vivo applications is also demonstrated.

THEORY

In free space or regions without susceptibility heterogenei
and no macroscopic currents, all the components of the ste
magnetic fieldH satisfy Laplace’s equation, i.eV°’H; = 0,

X, y, z, or V’H = 0, which can be easily derived by
setting the temporal derivative of the magnetic field in th
electromagnetic wave equatioh8j to zero. Therefore, local
magnetic induction 4, 19 experienced by a nucleus, (&
x/3)H, also satisfies Laplace’s equation. Since the spati
distribution of the phase of the MR signadl(x, y, z), linearly

In magnetic resonance spectroscopy and imaging, it is d®rresponds to the component of magnetic induction assum:
sirable to map the magnetic field distribution for shimminghg no phase aliasing, we have
procedures 2), and the interpretation or correction of arti-

facts @). Also, a magnetic field map could provide information

V2 = 0. [1]

important for understanding the magnetic susceptibility effects

(3-9 related to many medical applications such as functiongy short, both local magnetic induction amlare harmonic
magnetic resonance imaging)(tumor oxygenation measure-functions in regions with HMS.

ment @, 7), and bone marrow composition studie®. (Mag-

The mean value property of harmonic functiotg,(13, 16

netic resonance phase imaging (MRPI) is commonly used fstates that the mean value of a harmonic functioon a
mapping the magnetic field(9, 1. However, MRPI tech- spherical spac€ is equal to the value at the center(fi.e.,

nology has precision limits of about 10~ 10° T for

magnetic field mapping on phantoms and underivo condi-

tions (11).

A harmonic function {2-19 u is defined as satisfying
Laplace’s equatioiV’u = 0, commonly used for solving the
boundary value problems of static electromagnetic potentials

1
spherical mean valuésMV) = u(R) = AJ u(R + r)dQ

Q

(2]

(15). In this paper we realize that all of the vector componenis which Q is either a spherical surfac® with radiusr or a

of the static magnetic fields and the MR phase distribution asgell vV, with radiusr ranging fromr, to r,; A is either the
harmonic functions in regions with homogeneous magnetiarface area ofS, or the volume ofV,; R is at the center
susceptibility (HMS). Based on the mean value property of Q (Fig. 1).

harmonic functions 42, 13, 1§, a method is developed for

This property directly applies to the local magnetic inductiol

improving the measurement precision for MR phase and stagiad phase map in regions with HMS. With Eq. [2] we can
magnetic field signals. By means of gradient echo phase ieffectively reduce the noise in the MR phase and field me.
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FIG. 1. Harmonic functionu(R). S, is a spherical surface centeredrat
(=00) with radiusr. V, is a spherical shell also centeredRatwith radius
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in which u; ;. is the voxel value at the position, (j, k) (i, j,
k = 0, =1), and the center voxel is at the position (0, 0, 0)
A 3 X 3 X 3 Laplacian operator is constructed as

[5]

ranging fromr, tor,. The functionu(R) is equal to the mean value ofon S, Therefore, it is expected that the L-maps have constant ze

orV,.

values throughout the region with HMS and this is demor

strated for phantoms in Fig. 2. Quantitative results from typic:
3D regions of interest (ROI) with HMS in phantoms also shov

surements. The SMV decreases the random noise of the center
value by a factor of the square root Nf the total number of

the data points for averaging. For a sphere of radiusa 3D
image data sef\ ~ %” r®. In this paper, the spatial distance is
measured by an image unit (i.u.), which is defined as the width
of thex dimension of an image pixel or voxel. Wheiis fixed,

the center value, replaced by the average of all the ele-
ment values in the sphere, has its random noise reduced by a
factor of |/*” r*. With the radius of a typical image size 100
voxels, this is a noise reduction by 2000 times! Thus we can
effectively reduce the noise level of the MRPI phase maps with
the SMV property to improve the precision for magnetic field
measurement.

ANALYSIS AND RESULTS

Three-dimensional phase images of solution phantoms are
analyzed with customized Interactive Data Language (IDL)
software. Shown in left column of Fig. 2 are typical phase
image slices of a typical phantom along three orthogonal
directions (transverse, sagittal, and coronal).

Validation of the Harmonic Function Distribution

To verify that the phase distribution is truly a harmonic
function in regions of HMS, we employ the Laplace derivative
operation (LDO), a convolution of the 3D phase imaggs, y,

7) with the Laplacian operatot (20), to generate Laplace
derivative maps (L-maps). For images with identical spatial
resolutions in three orthogonal directions y, and z, the
discrete form of Laplace’s equation i21)

Raw

Coronal

FIG. 2. Comparison of the raw phase maps with the L-maps for the GuSC

aqueous solution phantom. (a) Typical phase image slices perpendicular
three orthogonal directions (transverse, sagittal, and coronal); all are sca

1
5(Up o0t U100t Ug10t Ug-10

with identical window size ([0, 2] radians). (b) The L-maps shown with a sam

window size (-1, 1] radians). For HMS regions, the L-maps are uniformly

+ Ugo1 T Ugo-1) — Ugoo=0 [38] zero with standard deviations smaller than that of raw maps.
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TABLE 1 imaging. Conventionally we adopt the relative field chang
Comparison of the Mean and the Standard Deviations (SD) of 1 = [B,. — Bo]/By in units of parts per million (ppm) as the
the Phase Maps and L-Maps from the Typical Phantom Study indicator of the field distribution. The relative fieigmaps for
the same 2D ROI in the above section are obtained from t
phase values, SMV], directly. The field map noise is also

ROI* and size Raw phase map Mean SD L-map Mean= SD

(voxel) (radians) (radians) o )
calculated, equal to the standard deviation of the difference
a:16x 16 X 3 1.16= 0.047 —-1.4x 10"+ 0.033 anm map and a background polynomial f&Q of the , map.
b: 49X 32 X 21 1.18+0.27 4.8% 10:? *=0.040 Here the true field distribution is assumed to be varying muc
€ 31x32x7 094 0.18 —27x10 72010 more slowly in space than the noise variation. Computer sir
d: 32X 32 x 32 1.34+ 0.19 —2.8X 10°° + 0.054

ulations showed that the noise determined from a proper orc

* Four typical three-dimensional ROIs with HMS are selected for the cdf Polynomial fit is within 10% of the true data noise level
culation. (ranging from 0.1 down to 1.& 10° ppm) for ROIs of sizes
at least 10 pixels across.

Generally speaking, the larger the spherical radiushe
that the L-maps have mean value very close to zero, tWo dpsater the number of voxels in the average, and the less

three orders of magnitude smaller than the standard deviatjflse of then map. Actually, theq map noise at radius f(r)

of the L-maps (Table 1). decreases very quickly from the noise of the raw field ma

We further investigate the mean value property of the phag@)) — 9.0033ppm, to 10 times less as the SMV radius is ove
map with SMV analysis on the 3D phase data. The SNNGr ,-e¢ pixels (Table 2). Withi(r) as the total number of voxels
a point of interest is calculated by averaging the values of all; spv at each radius. we assume

the image elements on a spherical shell centered at that point.
If not stated otherwise, the spherical shells we used for analysis

in this work have a thickness of one image unit. The SMV( f(r) = % + b, [6]
forr > 1 i.u. at a center point{,, Yo, Z,) is obtained by taking yN(r)

the mean value of those voxels at the coordinatesy( z) . _
satisfyingr? = (X — Xo)® + (y — yo)2 + (z — z,)> < (r + inwhicha andb are constants and account for raw data nois

1)2. Forr = 1 i.u., from Eq. [5] we havel( + 1)u = u. The and systematic errors. The fit 6fr) versus 1V N(r) (a =
left-hand side is equivalent to an image convolution by %25X 107> = 9 X 107 ppm,b = —7.90 X 10°° = 2 X
modified Laplacian derivative operator with zero weight on tht0 ~ Ppm) shows a good linear relationship in agreement wit
central matrix element (0, 0, 0). This means that the value of&- [6] (Fig. 3b).
central voxel is given by the six neighboring voxels which sit Figure 4 shows the surface plot of seveahaps generated
on the three orthogonal directionts y, andz. Therefore it is by SMV at increased levels of precision. With the mean valu
justified to define SMV(1)= (L + 1)u. Forr = 0, we define OVer a whole sphere of a large radius of 20 i.u., the fiel
SMV(0) = Uy, the value of that voxel itself. mapping precision % 10T (~3.8 X 10°° ppm) is achieved

When the center point and the spherical shells with variagigder the 1.5-T main field (Fig. 4f). The method reduces tF
radiusr are all in the same region of HMS, the SMVs remaifi€!d mapping noise by three orders of magnitude compared
constant for all radii (Fig. 3a). The standard deviation of tH&€ raw data without compromising the spatial resolution. Fe
mean SMV¢), 0.003 rad, is found to be much smaller than the
image noise, 0.02 rad. a b

To examine the aggregate SMV behavior in a typical two- s
dimensional (2D) ROl (12 by 12 pixels), we calculate —— pEEEEEs5585588S
mSMV(r), the mean of the SMV values at radius for all
pixels in that region, the radius varying from 0 to 15 i.u.
Whenr = 0, mSMV(0) is the raw data mean value, equal toZ o5}
1.471 rad. The fit of mSMMW() with radius by a constant line ?
(not shown) gives the mean mSMV value 1.4680.002 rad, °'°O 5 0 15 T
in good agreement with mSMV(0) within the noise level of the Rodius r ( pixels ) N
raw phase map predicted by the mean value property.

1.0

(radian)

Noise f x103 (ppm)

FIG. 3. Spherical mean value analysis. (a) Validation of the SMV prop
erty. SMV values are plotted against the radii of the spherical shells for seve
typical points of interest in the HMS regions under two typical field conditions

Magnetic resonance phase valyesan be converted to the (i) the phase map changes monotonously along,3l] andz axes {\); (i) the

t of | | tic inductioB di t phase map has local field extremities at least along one of the three orthogc
Z component or local magnetic InAuclioB,., according to axes (> andJ). (b) Dependence of thg map noisesf, on the number of

¢ = (YBun — wo)TE, in whichw, (=yB,) is the frequency of pixels in averaginglN. The noiséf for a typical 2D ROI (12x 12 pixels) with
the rotating frame and TE is the gradient echo time of MRMS is plotted against VN, with a linear fit correlation coefficient of 0.996.

High-Precision Field Mapping
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TABLE 2
The Noise Levels of the Relative Field n Maps Converted from SMV(r) of a Typical 2D ROl in the Phantom

One-image-unit-thickness spherical shells Whole sphere

r@i.u): 0 1 2 3 6 10 r=16 r=20
N 1 6 66 158 470 1358 17071 33371
VN 1 2.45 8.1 12.6 21.7 36.8 131 183
f(r) (ppm) 3.1x 10°° 1.6x 10°° 32x 10" 2.0x 10" 1.2x 10" 8.1x 10° 58x 10° 3.8x10°
*(r)* (ppm) 3.2x10° 1.3x10° 3.9x 10" 25x 10 1.4x10* 8.0x 10° 1.7x10° 9.9x 10°

®f*(r) is the noise predicted from the linear fit results (Eq. [6]), in good agreement with the realf(rgis€he noisef(r = 0) (N = 1) corresponds to
SMV(0), the noise of raw maps.

a different field distribution of another ROI, Figs. 4g and 4fTherefore, the phase distributions in those spaces sati
show the raw field map ang map atr = 6 i.u., respectively. Laplace’s equation, and the SMV method is used to reduce t
The m map demonstrates substantial precision improvemeantise of the raw magnetic field map by an order of magnituc
over the raw field map. for a typical 2D ROI shown in Fig. 6.

In Vivo Feasibility DISCUSSION AND CONCLUSION

We also test the feasibility of applying the SMV method to Commonly used data processing methods such as smoot

in vivo 3D MR phase maps of human legs. Rorvivo appli- over a rectangular template or frequency filtering can genere
cations, the HMS condition may not be satisfied, particularly &Y 9 P q y 9 9 €

those transition interfaces between muscle tissues, blood ves-

sels, and bones. However, spaces of scales ranging from sz b
eral to more than 10 voxels can be found on the L-maps, a
they have mean values very close to zero, several orders
magnitude smaller than the L-map standard deviations (Fig.

L-map

a =0 b r=1 (W r=2 d r=3

Transverse Slice at Z=32 Transverse Slice at Z=32

¢ r=6 f =20 g r=0 h r=6
A

Ao oo
A
flpit
T ‘A\":"\",, “’
W \‘v}}}"‘,“«ﬁ

i,
IR
%

2 Coronal Slice at Y=114
N
3 :,‘42'"

A,
i
e

Sagittal Slice at X=128 Sagittal Slice at X=128

FIG. 4. Improved magnetic field mapping precision for the 2D ROl used FIG. 5. Application of the Laplace derivative operation to 3D vivo
in Fig. 3b. (a) The raw field mag from SMV(0) with noise about 0.0033 ppm. human leg phase images (matrix 2586256 X 64). Typical slices of phase
(b, ¢, d, e) High-precision field map obtained from the SMV on the sphericalaps (column a) and L-maps (column b) along three orthogonal axes (tra
shells with radii spanning fromtor + 1,r = 1, 2, 3, 6 i.u., respectively. verse, coronal, and sagittal) are shown with the position indicated by t
SMV reduces the raw map noise to halfrat 1 i.u., 13% atr = 2 i.u., less coordinates. All images are scaled with an identical window sizer,[]
than 10% atr = 3 i.u., and 4% at = 6 i.u. (Table 2). (f) The field map radians. Since the raw images have different resolutions alopgandz axes
obtained by the SMV over the entire sphere of a radius of 20 i.u. The rand@f53 X 0.53 X 1 mm, respectively), different scaling factors are introducec
noise is cut down to 3.& 10°° ppm. (g, h) The raw field map angimap at  for x, y, andz terms in Laplace’s equation and the Laplacian operator (see tl
r = 6 i.u. for another ROI with a different field distribution. The two verticalAppendix). The L-maps are uniformly zero within the noise of raw maps, exce
scales on the left indicate 0.02 ppm for the change of the magnetic field. at those transition interfaces between muscle tissues, blood vessels, and bon
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a b ciently small quantity, the system instabilities will manifes
themselves, including semirandom or nonrandom factors fro
both the experimental system and the environment. Presu
ably these factors are much smaller than the random noise
raw maps. Whereas the SMV method gives us a tool to pu
the measurement noise down to this lower limit, it also prc
vides us the possibility of examining the system error factors
a better extent by virtually eliminating the random noise.
Phase imaging is sensitive to the field deviations caused
: - factors such as local eddy currents, temperature fluctuatic
FIG.6. Invivohuman leg relative fielsy maps for a typical 2D ROI (1%  and gradient deviations. Their net effects are to overlay shif
11 pixels, corresponding to the white rectangular marker in Fig. 5). (a) The rgyy the phase map. Under the experimental condition of th
field maps. (b) The high-precision field map obtained from SMV analysis Qi the phase shift generated by eddy currents is presuma
a_entlre sphere_ af = 4 i.u. The images are shown with artnflma_lly enlargedIinear with the spatial coordinate$q). The Laplacian deriva-
pixels and a window range o0f{0.05, 0.15] ppm. The raw noise is cut down . o -
from 0.026 to 0.001 ppm. tive of a linear function is zero; therefore the phase shift due
eddy currents is a harmonic function. The temperature-induc
phase shift is also linear with the temperature chaddg The
images with reduced noise, but these approximation methddmperature instability comes from environmeqa0(1°C) and
may compromise both the spatial resolution and the accurabg milder heating effects of MR sequences. Even when tl
because they generally give a biased estimate of the true vabeghperature change is inhomogeneous in the phantom, as I
value. The SMV method is a special smoothing method ovas there are no substantial sources of heat generation or di
spherical regions. Because the mean value property is thaion within the spherical space for SMV analysis, the ten
intrinsic property of harmonic functions, the SMV method is gerature distribution will obey Laplace’s equati&iT = 0
smoothing that maintains the correct estimate of the true méa4). The sources of system imperfection may generate no
surement value for harmonic functions. From first principlénear gradient deviations, but the sources are not within tt
and also experimentally confirmed by this work, static madromogeneous susceptibility space under study. Therefore, w
netic fields and corresponding phase maps are harmonic futie presence of eddy currents, temperature fluctuation, a
tions in HMS regions. Applied to these regions, the SMgradient deviations, the phase distribution is still classified as
method produces high-precision field maps. These maps heemonic function in regions of HMS. This is confirmed by the
more accurate than conventional smoothing over a rectangutaghly homogeneous L-maps with the mean value deviatir
region (demonstrated by computer simulation). from zero only by a small amount on the order of 1@ad
With the robust spherical mean value method, we cut dowr1.6 X 10°° ppm) or less (Table 1), and the constant mea
the field mapping noise to 8 10 T (atr = 20 i.u.), within value property shown in the SMV analysis (Fig. 3a). The SM\
the sensitivity range 10° ~ 10" T of the SQUID (7). method can be applied, but the field maps are overlaid wi
Compared to SQUID, MRPI has the advantage of 3D fieliases due to gradient deviations, eddy currents, and tempe
mapping with a spatial resolution of submillimeter. In additioture fluctuations. The biases can presumably be canceled
to the application to MR field shimming, the higher precisiowith controls when only relative field or phase changes are
magnetic field mapping can contribute to the creation of moneterest for most applications. Actually the methods in thi
reliable baselines in phase-encoded MR spectroscopy, gaper make it feasible for a more precise quantitation of tt
more effective correction of the field inhomogeneity in speeffects on field maps by these factors. For example, take t
troscopy imaging Z2). It can also help to correct image dis-difference of the high-precision maps before and after turnir
tortion artifacts to a more precise extent, and produce highmr a magnetic gradient, and the quantitative effect of edc
quality images 23). currents from this gradient can be obtained with improve
However, the precision improvements can be compromisadcuracy.
near edges where the size of the sphere must be decreased lim addition to the precision improvement and the evaluatio
order to keep the whole sphere in the HMS region. ifhevo of systematic factors, the method can be used for the artife
homogeneity of the magnetic susceptibility can be evaluatedrrection on phase maps as well. Due to factors such
with Laplace derivative operation. Our analysis with humamotion and flow, there are localized artifacts and smears on t
leg phase maps suggests that the SMV method is applicabl@b@ase maps. Generally speaking, for unknown data at a point
local in vivo regions with a scale as large as 10 voxels. Eventerest on phase images, we can actually obtain the true va
with the SMV on a sphere of radius of three voxels, the noigé this point by taking the average of all the image elemel
can be reduced to less than 10% of raw data noise (Table Zlues on a spherical surface or shell surrounding it, when t
The MR scanner system instability can also limit the precassumption of the harmonic function is valid throughout the
sion improvements. When we reduce random noise to a suffihole spherical region.
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We have demonstrated theoretically and experimentally tHaimilarly
magnetic field components and the phase distribution in a

uniform magnetic susceptibility region are harmonic functions. 92U Ugio+ Uy 10— 2Uo oo
We further developed the general methodology of precision FIveie — (A 52 —
improvement based on the mean value property of harmonic y y
functions. The precision of the 3D MR phase and magnetic 0%U  Ugio+ Ug 10— 2Ug oo
field mapping can be substantially improved both in phantoms 0722 (Az)? . [3]
andin vivo.
EXPERIMENTAL Assume thatAx = 8,% = Ay, and% = )\, then

Experimental phantoms consist of one or more small boxes
(various shapes such as cylindrical and rectangular, and sizes , Uy ot U100~ 2Ugo0
of a few centimeters, filled with 0.03 0.1 M aqueous CuSQO Vu= 52
solution) glued to a thin plastic supporting frame mounted in a
large beaker. The beaker is filled with much less concentrated 42 Uo1,0F Uo-1,0 = 2Uo 0,0
copper sulfate aqueous solution X072 M). The susceptibility ! 8?
difference between the inside and outside the small box con-
tributes to the magnetic field inhomogeneity in the phantom. + A3
Three-dimensional fast-low-angle-shot (FLASH) images of
the phantoms were obtained with a head coil on a Siemens 1 5
1.5-T clinical MR scanner ¥Bo/2m = 63.59 MHz). The =52 (U0t U100 + AiUg10+ Uo-10)
imaging parameters for the phantoms are TR/TE 40/15 ms, flip X ) 5
angle 30°, matrix 12& 128 x 128, resolution 2 1 X 1 mm, + A2(Upo1t Ugo-1) = 2(1 + AT+ AZ)Up 0l
and single excitation. Then vivo 3D phase maps were ac- =0 [4]
quired for a thick transverse section of the small leg of a female
human subject, with imaging parameters TR/TE 40/15 ms, flip U100+ U-1,00+ AZ(Ug 1,0+ Uo 10 + A3(Ug o1+ Ugo-1)
angle 30°, mgtrix 256<_ 256 X 64, res_ol_ution 0.5% 0.53 X _ —2(1+ A2+ A2 Up o= 0. [5]
1 mm, and single excitation. The original FLASH phase im- "
ages appear with zebra stripes because of the asymmetrical o
gradient echoes. They are restored to normal images wiiRrmalize the coefficient ofi(0, 0, 0) to one, and we have
customized IDL software by shifting the central positions of
the MR gradient echo signals in thkespace before the Fourier
transform. Then the phase maps were used for data analysism (U007 U-1,00

Ug0,17F Uoo-1— 2Uo 0,0
. 52

APPENDIX A
+ o +
) 2(L+ A2+ A (Uo,1.0%F Uo,-1,0
Construction of the 3D Laplace Derivative Operator L

A
From Laplace’s equation + 20+ A2+ 7D (Ugo1+ Ugo-1) — Ugoo=0. [6]
a%u  9%u  a% _ . _
Ix2 + ay? + 92 0, [1] The Laplacian operatdr is a 3 X 3 X 3 matrix; the compo-
nents are
we consider the discreet form of the equation at the position 0 0 0
(0,0,0) U« is the value of the voxel at the position [, k) (i, Lg000={0 0.BAY(1+AT+A3) O
j, k=0, £1)), 0 0 0]
0 0.503/(1 + A2+ 7))
Ui 0,0~ Uoo00 Uooo~ U-100 r 2 2
, 0 00 _ 200, 0 Lay0=|0.5(1+ A%+ 23 -1
o Ax AX 0 0.5 %/(1 + A2+ A2
ax? Ax

0
Uz o0t U-100~ 2Ug 0,0 0.5(1+ A2+ 13|, [7]
= 2 : (2] ! ?

(AX) 0
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1 5.
5(Ug00F U100+t Ug10t Ug-10
+ Ugo1+ Uoo-1) — Ugoo=10 (8] 6.
then 7
0 00 0 3 O 0 00 8.
[={lo 30| ,|t -1 ,|oto0 °
0O 0O 0 t o0 0 0O 10.
z=-1 z=0 z=1
11.
[

For image analysis, Laplace’s equation is equivalent to &

convolution of( with u

13.

L ®u=0 or Lu=0. [10] 14

We define the Laplace derivative operation (LDOYa® uor 15
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